Parameter Uncertainty, Portfolio Turbulence and Aggregate Stock Returns

Sebastian Stöckl

DGF 2017

Results

Implications for aggregate stock returns

Given that:

- Enough Investors are averse to PU AND
- React to elevated levels of PU by reducing their investments in the market THEN
- PU should predict aggregate stock returns negatively

We show that:

- *c*_{PU} predicts aggregate stock returns IS and OOS
- outperforms all other popular variables including SII
- stable predictor according to Welch & Goyal (2008, RFS)
- statistically and economically significant
- robust to a large variety of different specifications

This in turn confirms:

 Investors are averse to PU and react according to Garlappi et al., (2007)!

Sample:

• Exact replication of Rapach et al., (2016, JFE)

Optimize Portfolio based on estimates $\hat{\mu}$ and $\hat{\Sigma}$ of true μ and Σ

- Optimize Portfolio based on (updated) estimates μ̂ and Σ̂?
 Uncertainty about parameters!
 - According to Garlappi et al. (2007, RFS) such investors withdraw from the market

Our paper:

- Hotelling's T-Statistic quantifies parameter uncertainty (PU): how far are current returns away from their historic average? $PU_t = 1/N(\bar{r}_t - \hat{\mu})'\hat{\Sigma}^{-1}(\bar{r}_t - \hat{\mu})$
- According to Garlappi et al., (2007) and Kan & Zhou (2007):

$$v^* = \frac{c_{PU}}{\gamma} \widehat{\Sigma}^{-1} \widehat{\mu}$$
 with $c_{PU} = 1 - \left(\frac{\lambda PU_t}{\widehat{\theta}_t^2}\right)^2$ if $\widehat{\theta}_t^2 > \lambda PU_t$

Investors with aversion to PU reduce their investment in the optimal portfolio

https://ssrn.com/abstract=2988568

Implications for aggregate stock returns?

П С 5.

പ്പ

PU 0.2

