Financial Applications of the Mahalanobis Distance 26th Australasian Finance and Banking Conference 2013

S. Stöckl¹, M. Hanke

Chair of Finance Institute for Financial Services University of Liechtenstein

Thursday, December 19th, 2013

¹Corresponding author; email: sebastian.stoeckl@uni.li; tel: +423 265 ±153. ♂ > < = > = - つ < <

Contents

Introduction

2 Properties of the Mahalanobis distance

3 Types of Financial Applications

4 Conclusion

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 - ∽ Q @

Motivation

■ Many problems in finance involve multivariate random variables ⇒ Similarity of realizations?

◆□ > ◆母 > ◆臣 > ◆臣 > 善臣 - のへで

Motivation

- Many problems in finance involve multivariate random variables ⇒ Similarity of realizations?
- ⇒ Suitable (based on statistical theory) measure for detection: the Mahalanobis distance (MD)
- Examples: outlier detection, portfolio surveillance, asset classification

Introduction

Introduction

- Application based on MD: Financial Turbulence [Kritzmann & Li, 2010]
- Multivariate unusualness in financial market data

$$FT_t = (\mathbf{r}_t - \boldsymbol{\mu})' \Sigma^{-1} (\mathbf{r}_t - \boldsymbol{\mu}).$$
(1)

 $\blacksquare \Rightarrow \mathsf{Based} \text{ on squared } \mathsf{MD}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Introduction

Introduction

- Application based on MD: Financial Turbulence [Kritzmann & Li, 2010]
- Multivariate unusualness in financial market data

$$FT_t = (\mathbf{r}_t - \boldsymbol{\mu})' \Sigma^{-1} (\mathbf{r}_t - \boldsymbol{\mu}).$$
(1)

- $\blacksquare \Rightarrow \mathsf{Based} \text{ on squared } \mathsf{MD}$
- **r**_t, μ and Σ may each be determined or estimated in various different ways.

Introduction

- Application based on MD: Financial Turbulence [Kritzmann & Li, 2010]
- Multivariate unusualness in financial market data

$$FT_t = (\mathbf{r}_t - \boldsymbol{\mu})' \Sigma^{-1} (\mathbf{r}_t - \boldsymbol{\mu}).$$
(1)

イロト イポト イヨト イヨト

- $\blacksquare \Rightarrow \mathsf{Based}$ on squared MD
- **r**_t, μ and Σ may each be determined or estimated in various different ways.
- ⇒ Depending on inputs, the resulting Mahalanobis distance will have a different economic interpretation.

Aim of the paper:

Explore promising combinations (Input).

Discuss previous and potential uses and usefulness for financial market participants (Output).

Contents

1 Introduction

2 Properties of the Mahalanobis distance

3 Types of Financial Applications

4 Conclusion

Initial Motivation for MD

- Analyze and classify human skulls into groups, based on different properties [Mahalanobis, 1927]
- Properties for group classification in a financial context: Returns on assets in a portfolio
 Portfolio properties for an investment company

Use of MD suggested by Kritzmann & Li (2010)

- MD as indicator for unusualness in financial markets (Financial Turbulence)
- Return of one asset in relation to it's historical mean and standard deviation: $(r_t \mu)^2 / \sigma^2$
 - \Rightarrow (Squared) Mahalanobis Distance for one asset

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Use of MD suggested by Kritzmann & Li (2010)

- MD as indicator for unusualness in financial markets (Financial Turbulence)
- Return of one asset in relation to it's historical mean and standard deviation: $(r_t \mu)^2 / \sigma^2$
 - \Rightarrow (Squared) Mahalanobis Distance for one asset
- Multivariate extension in a portfolio context

$$\Xi u_t^2 = \sum_{i=1}^n \frac{w_i^2}{w^2} \frac{(r_{t,i} - \mu_i)^2}{\sigma_i^2}$$
(2)

 \Rightarrow Weighted, squared and normalized Euclidean Distance

Use of MD suggested by Kritzmann & Li (2010)

- MD as indicator for unusualness in financial markets (Financial Turbulence)
- Return of one asset in relation to it's historical mean and standard deviation: $(r_t \mu)^2 / \sigma^2$
 - \Rightarrow (Squared) Mahalanobis Distance for one asset
- Multivariate extension in a portfolio context

$$\mathsf{Eu}_{t}^{2} = \sum_{i=1}^{n} \frac{w_{i}^{2}}{\mathbf{w}^{2}} \frac{(r_{t,i} - \mu_{i})^{2}}{\sigma_{i}^{2}}$$
(2)

 \Rightarrow Weighted, squared and normalized Euclidean Distance

Including information on the direction of moves

$$\mathsf{Ma}_{t}^{2} = \frac{1}{\mathbf{w}^{2}} \left(\mathbf{r}_{t} - \boldsymbol{\mu} \right)^{'} \mathbf{w}_{D} \boldsymbol{\Sigma}^{-1} \mathbf{w}_{D} \left(\mathbf{r}_{t} - \boldsymbol{\mu} \right)$$
(3)

 \Rightarrow Weighted, squared and normalized Mahalanobis Distance (Portfolio Turbulence)

(Statistical) Properties of the MD

• (Squared) MD has a $\chi^2(n)$ -distribution (given $\mathbf{r}_t \sim N_n(\mu, \Sigma)$)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 めへぐ

(Statistical) Properties of the MD

- (Squared) MD has a $\chi^2(n)$ -distribution (given $\mathbf{r}_t \sim N_n(\mu, \Sigma)$)
- (Weighted & squared) MD has a generalized χ^2 -distribution with parameters Σ and $\mathbf{w}_D \Sigma^{-1} \mathbf{w}_D$ and Expectation $\mathbf{w}^2 = tr(\mathbf{w}_D^2) = \sum_{i=1}^n w_i^2$
- Normalization leads to an Expaction of 1

(Statistical) Properties of the MD

- (Squared) MD has a $\chi^2(n)$ -distribution (given $\mathbf{r}_t \sim N_n(\mu, \Sigma)$)
- (Weighted & squared) MD has a generalized χ^2 -distribution with parameters Σ and $\mathbf{w}_D \Sigma^{-1} \mathbf{w}_D$ and Expectation $\mathbf{w}^2 = tr(\mathbf{w}_D^2) = \sum_{i=1}^n w_i^2$
- Normalization leads to an Expaction of 1
- MD is invariant under affine transformation $Y = a + B\dot{X}$ [Meucci, 2009]
- MD captures all statistical information for elliptical distributions (fully described by location parameter μ and scatter matrix Σ)

Contents

1 Introduction

2 Properties of the Mahalanobis distance

- **3** Types of Financial Applications
 - Sampe-based Differences
 - Deviations from Model Prices
 - Forecast Evaluation

4 Conclusion

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

To detect major changes in markets

Distinguish two types of sample based differences:

- Compare a realization to a historical sample or
- Compare two samples

Compare a realization to a historical sample

- Financial and Portfolio turbulence: relates today's returns to historical means $(\mu = \bar{\mathbf{x}})$ and sample covariances $(\Sigma = S)$.
- \blacksquare \Rightarrow Standardized indicator of unusual behavior across markets and portfolios.
- Useful for market/portfolio surveillance [Bodnar, 2009].

Compare two samples

■ Compare two samples of different time periods by relating their means and covariance matrices against each other [McLachlan, 1999]
 ⇒ Hotelling T²-test for multivariate dependent samples, based on (squared) MD [Rao, 2009].

Compare two samples

■ Compare two samples of different time periods by relating their means and covariance matrices against each other [McLachlan, 1999]
 ⇒ Hotelling T²-test for multivariate dependent samples, based on (squared)

MD [Rao, 2009].

- Use both methods to determine periods of (non-) turbulence.
- Use turbulent market parameters for stress testing portfolios [Chow, 1999].
- Use non-turbulent market parameters (removing outliers) for robust portfolio estimation [Campbell, 1998].

Example 1: Change in market conditions during the financial crisis

- Portfolio equities (3/8), fixed income (2/8), real estate (2/8) and alternative investments (1/8)
- Historical sample calibration period: 2004-2006

	mean	std.dev	skewness	kurtosis
Equities	0.0006	0.0058	-0.23	1.02
Fixed income	0.0001	0.0035	0.00	1.01
Real estate	0.0010	0.0067	-0.49	1.40
Alt. investments	0.0003	0.0146	0.13	0.43

Table 1: Descriptive statistics - Time frame: 01/2004-12/2006. Indices to proxy for these asset classes: Equities: FTSE ALL WORLD, Fixed income: Barclays Multiverse All, Real estate: FTSE EPRA/NAREIT Global, Alt. investments (proxied using commodities): S&P GSCI Commodities

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Example 1 cont.: Change in market conditions during the financial crisis

• As of 01/2007 observe the MD for an indication of changed market conditions

Figure 1: Portfolio Turbulence: MD of realized returns from historical returns (sample period 01/2004-12/2006) and 0.05/0.95 confidence bands (green)

Deviations from Model Prices

Use the MD to find deviations of observed from implied returns of theoretical/empirical models such as the CAPM or the Fama-French 3-factor model

Use...

- ... to asses how much markets are in line with models
- ... as indication for bubbles in markets
- ... to assess which competing model best describes the markets

Deviations from Model Prices

Example 2: Asset returns implied by the Black-Litterman Model [Black & Litterman, 1992]

- Use monthly returns and market capitalization of 22 country indices from 1988-2012 [Kaiser et al., 2013]
- Calculate implied returns $E(\mathbf{r}_{t+1}) = \delta \Sigma_t \mathbf{w}$ [Walter, 2011], assuming $\delta = 1$, weights \mathbf{w}_t and covariance matrix Σ_t (120-month rolling window)

Figure 2: Mahalanobis distances of realized vs. Black/Litterman-implied values

Use of the MD to evaluate multivariate forecasts

- For a multivariate point forecast μ_t , its MSE-Error matrix Σ determines a MD-based confidence ellipsoid \Rightarrow to evaluate the forecast quality regarding the observation \mathbf{r}_t
- The MSE-matrix determines the shape of the confidence ellipsoid (defined by the MD) with center μ_t .

Two possibles uses of the MD

Possible uses of the MD

- To calculate forecast confidence regions for a (univariate) forecast path important for many (path-dependent) financial applications [Jorda & Marcellino, 2010] (Wald Statistic based on MD)
- Evaluate multivariate point-forecast using confidence ellipsoids [Lütkepohl, 2006] (in contrast to "Bonferroni"-confidence rectangles)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Example 3: Estimating a VAR-model for exchange rates

- VAR-model based on log-differences of the USD/GBP spot rate $ds_t = \Delta log(s_t)$, and the resp. forward premium $p_t = f_t s_t (01/1980 07/2013)$
- Estimation yields the following VAR(1,1)-proccess:

$$\begin{pmatrix} ds_t \\ p_t \end{pmatrix} = \begin{pmatrix} -0.0029 \\ -0.0002 \end{pmatrix} + \begin{pmatrix} 0.0671 & -0.8373 \\ 0.0004 & 0.9025 \end{pmatrix} \begin{pmatrix} ds_{t-1} \\ p_{t-1} \end{pmatrix} + \begin{pmatrix} u_{1t} \\ u_{2t} \end{pmatrix}$$
(4)
with $\Sigma_u = \begin{pmatrix} 0.000888 & -0.000008 \\ -0.000008 & 0.000002 \end{pmatrix}$.
MSE-matrices $\Sigma_y(1) = \Sigma_u$ and
 $\Sigma_y(2) = \Sigma_y(1) + \Phi_1 \Sigma_y(1) \Phi_1' = \begin{pmatrix} 0.00089 & -0.00006 \\ -0.00006 & 0.00064 \end{pmatrix}$ [Lütkepohl, 2006]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Example 3 cont.: Estimating a VAR-model for exchange rates

Forecasts	ds_{t+h}	p_{t+h}	ds _t (h)	$p_t(h)$
		1.11	,	1.()
06/2013	-0.0262	-0.0003	-0.0009	-0.0005
07/2013	0.0004	-0.0003	-0.0025	-0.0006
MSE $\Sigma_y(h)$	2013M06		2013M07	
	0.000888	-0.000008	0.00089	-0.00006
	-0.000008	0.000002	-0.00006	0.00064

Table 2: VAR forecasts vs. realized values

This table reports forecasts (for 06/2013 and 07/2013) for the log return of the USD/GBP spot rate (*ds*) and the forward premium (*p*), using the VAR process stated above. In addition, it shows the realized values for these variables together with the corresponding MSE matrices.

Example 3 cont.: Estimating a VAR-model for exchange rates

Contents

1 Introduction

- 2 Properties of the Mahalanobis distance
- **3** Types of Financial Applications
- 4 Conclusion

Conclusion

For multivariate (financial) problems

MD naturally supports answering questions regarding existence and magnitude of deviations

- between observations
- between observations and theoretically (model-) implied values
- between observations and predictions

implying different economic interpretations.

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ○ ○ ○

Conclusion

The end

Thank you ...

... very much for your attention!

Conclusion

Literature I

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 りへぐ

